

Selectarc B691

Basic coated Electrode
For creep resisting steels

Classification

AWS A5.5	$:$	E9015-B9	EN 1599	$:$
AWS A5.5M	E CrMo91 B 42 H5			
E6215-B9	ISO 3580-A	$:$	E CrMo91 B 42 H5	

Description \& Applications

Low hydrogen basic coated electrode for welding creep resistant steels of similar chemical composition (known as P91) used at service temperatures up to $650^{\circ} \mathrm{C}$. Deposit resisting to temperature and creep up to $650^{\circ} \mathrm{C}$. Highly resistant to hot gas and overheated steam.

Main applications: For power plants, heat exchangers, tubes, steam boilers,...

Base materials Plates and pipes for boiler and pressure vessels

Mat. N°	EN	ASTM
1.7386	X12CrMo9-1	A187 Gr F9; A336 Gr F9; A335 Gr P9
1.7389	GX12CrMo10-1	A217 C12
1.4903	X10CrMoVNb9-1	Â199 gr. T91; A335 gr. P91; A213 gr T91

Typical Weld Metal Composition (\%)

C	Si	Mn	Cr	Ni	Mo	Cu	V	Nb	N	P	S
0.1	0.25	0.7	9.0	0.7	1.0	0.04	0.2	0.05	0.05	0.01	0.008

All Weld Metal Mechanical Properties

$\mathrm{R}_{\mathrm{p} 0,2}(\mathrm{MPa})$	$\mathrm{R}_{\mathrm{m}}(\mathrm{MPa})$	$\mathrm{A}_{5}(\%)$	$\mathrm{KV}(\mathrm{J})$
630	750	18	$+20^{\circ} \mathrm{C} 60$

* After heat treatment at $760^{\circ} \mathrm{C} / 2 \mathrm{~h}$

Welding Current \& Instructions

Electrode	$\varnothing \times \mathrm{L}(\mathrm{mm})$	$2,5 \times 300$	$3,2 \times 350$	$4,0 \times 450$
Current	(A)	80	115	150

Redrying: 1 h at $300^{\circ} \mathrm{C}$, if necessary. Preheating of joints to weld at $200^{\circ} \mathrm{C}$. Interpass temperature: 200$300^{\circ} \mathrm{C}$. Slow air cooling to a temperature below $80^{\circ} \mathrm{C}$ followed by an annealing at $760^{\circ} \mathrm{C} / 2-6 \mathrm{~h}$, then slow cooling. To achieve improved impact resistance, thin layers with about 2 mm thickness should be welded.

